Latest Tweets:

birdwithapeopleface:

artisawaynotathing:

New mathematical study reveals that our Galaxy should have been colonized by now
A recent article in the Economist alerted me to a recent paper by Thomas Hair and Andrew Hedman that profoundly reaffirms the conundrum that is the Fermi Paradox, an observational problem that is sometimes referred to as the Great Silence.  What’s fascinating about the Hair and Hedman paper is that they are not  cosmologists or astrobiologists, but rather mathematicians—and it is  through the lens of number-cruching that they sought an answer to the  question of how long it would take a civilization to colonize its local  region given a specific set of parameters. And their findings are  disturbing: No matter how they reworked the numbers, they came to the  same conclusion: the Galaxy should be colonized by now:
To arrive at their conclusion Dr Hair and Mr Hedman assumed that  outer space is dotted with solar systems, about five light years apart.  They then asked how quickly a single civilisation armed with the  requisite technology would spread its tentacles, depending on the degree  of colonising zeal, expressed as the probability that intelligent  beings decide to hop from one planet to the next in 1,000 years (500  years for the trip, at a modest one-tenth of the speed of light, and  another 500 years to prepare for the next hop). All these numbers are necessarily moot. If the vast majority of planets  is not suitable, for instance, the average distance for a successful  expedition might be much more than five light years. And advanced beings  might not need five Earth centuries to get up to speed before they  redeploy. However, Dr Hair and Mr Hedman can tweak their probabilities  to reflect a range of possible conditions. Using what they believe to be  conservative assumptions (as low as one chance in four of embarking on a  colonising mission in 1,000 years), they calculated that any galactic  empire would have spread outwards from its home planet at about 0.25% of  the speed of light. The result is that after 50m years it would extend  over 130,000 light years, with zealous colonisers moving in a relatively  uniform cloud and more reticent ones protruding from a central blob.  Since the Milky Way is estimated to be 100,000-120,000 light years  across, outposts would be sprinkled throughout the galaxy, even if the  home planet were, like Earth, located on the periphery.  Crucially, even in slow-expansion scenario, the protrusions eventually  coalesce. After 250,000 years, which the model has so far had the time  to simulate, the biggest gaps are no larger than 30 light years across.  Dr Hair thinks they should grow no bigger as his virtual colonisation  progresses. That is easily small enough for man’s first sufficiently  powerful radio transmissions (in the early 20th century) to have been  detected and for a reply to have reached Earth (which has been actively  listening out for such messages since the 1960s). And though 50m years  may sound a lot, if intelligent life did evolve more than once, it could  easily have done so billions of years before this happened on Earth.  All this suggests, Dr Hair and Mr Hedman fear, that humans really do  have the Milky Way to themselves. Either that or the neighbours are a  particularly timid bunch.
So, the next time somebody smugly shrugs off the Fermi Pardox by  suggesting that “it takes too long to colonize the Galaxy” or that  “there hasn’t been enough time,” or that “the Galaxy is too big,” tell  them to shut-up and read this paper.

This is fascinating.

Or simply put they don’t factor in imperial stagnation. Perhaps the civilizations that survive to colonize are not aggressive enough to colonize wide ranges and stagnate colonization after a certain size to maintain an integrated community. Or many rapid expansion causes the fermi paradox in which as a civilization expands, the distance causes dissent and fragmentation which causes inter-civilization conflicts resulting in stalling colonization to fight a war.

birdwithapeopleface:

artisawaynotathing:

New mathematical study reveals that our Galaxy should have been colonized by now

A recent article in the Economist alerted me to a recent paper by Thomas Hair and Andrew Hedman that profoundly reaffirms the conundrum that is the Fermi Paradox, an observational problem that is sometimes referred to as the Great Silence.

What’s fascinating about the Hair and Hedman paper is that they are not cosmologists or astrobiologists, but rather mathematicians—and it is through the lens of number-cruching that they sought an answer to the question of how long it would take a civilization to colonize its local region given a specific set of parameters. And their findings are disturbing: No matter how they reworked the numbers, they came to the same conclusion: the Galaxy should be colonized by now:

To arrive at their conclusion Dr Hair and Mr Hedman assumed that outer space is dotted with solar systems, about five light years apart. They then asked how quickly a single civilisation armed with the requisite technology would spread its tentacles, depending on the degree of colonising zeal, expressed as the probability that intelligent beings decide to hop from one planet to the next in 1,000 years (500 years for the trip, at a modest one-tenth of the speed of light, and another 500 years to prepare for the next hop).

All these numbers are necessarily moot. If the vast majority of planets is not suitable, for instance, the average distance for a successful expedition might be much more than five light years. And advanced beings might not need five Earth centuries to get up to speed before they redeploy. However, Dr Hair and Mr Hedman can tweak their probabilities to reflect a range of possible conditions. Using what they believe to be conservative assumptions (as low as one chance in four of embarking on a colonising mission in 1,000 years), they calculated that any galactic empire would have spread outwards from its home planet at about 0.25% of the speed of light. The result is that after 50m years it would extend over 130,000 light years, with zealous colonisers moving in a relatively uniform cloud and more reticent ones protruding from a central blob. Since the Milky Way is estimated to be 100,000-120,000 light years across, outposts would be sprinkled throughout the galaxy, even if the home planet were, like Earth, located on the periphery.

Crucially, even in slow-expansion scenario, the protrusions eventually coalesce. After 250,000 years, which the model has so far had the time to simulate, the biggest gaps are no larger than 30 light years across. Dr Hair thinks they should grow no bigger as his virtual colonisation progresses. That is easily small enough for man’s first sufficiently powerful radio transmissions (in the early 20th century) to have been detected and for a reply to have reached Earth (which has been actively listening out for such messages since the 1960s). And though 50m years may sound a lot, if intelligent life did evolve more than once, it could easily have done so billions of years before this happened on Earth. All this suggests, Dr Hair and Mr Hedman fear, that humans really do have the Milky Way to themselves. Either that or the neighbours are a particularly timid bunch.

So, the next time somebody smugly shrugs off the Fermi Pardox by suggesting that “it takes too long to colonize the Galaxy” or that “there hasn’t been enough time,” or that “the Galaxy is too big,” tell them to shut-up and read this paper.

This is fascinating.

Or simply put they don’t factor in imperial stagnation. Perhaps the civilizations that survive to colonize are not aggressive enough to colonize wide ranges and stagnate colonization after a certain size to maintain an integrated community. Or many rapid expansion causes the fermi paradox in which as a civilization expands, the distance causes dissent and fragmentation which causes inter-civilization conflicts resulting in stalling colonization to fight a war.

  1. jackbeloved reblogged this from artisawaynotathing and added:
    I wonder why everyone always ignores the obvious: angels are extraterrestrial life forms. So are demons. We’ve been...
  2. radon-t reblogged this from abluegirl and added:
    if adam and eve hadn’t messed up we would be farther that a galaxy
  3. abluegirl reblogged this from thenewenlightenmentage
  4. requiem-for-a-black-rose reblogged this from scinerds
  5. paris-collage reblogged this from scinerds
  6. spook-and-spooky reblogged this from scinerds
  7. cgull3 reblogged this from scinerds
  8. dreemchaos reblogged this from antitau and added:
    New mathematical study reveals that our Galaxy should have been colonized by now A recent article in the Economist...
  9. polymath4ever reblogged this from self-synthesis
  10. self-synthesis reblogged this from scinerds
  11. thelighthasgoneoutofmylife reblogged this from scinerds
  12. floods-above-and-fire-below reblogged this from scinerds
  13. jocicausa reblogged this from scinerds
  14. salgentile reblogged this from scinerds and added:
    Sorry for all the sciencey BS today but COOL STUFF IS HAPPENING.
  15. midwayuponthisjourney reblogged this from scinerds
  16. antitau reblogged this from scinerds
  17. contentment-of-cats reblogged this from scinerds
  18. theicsmuse reblogged this from birdwithapeopleface and added:
    Or simply put they don’t factor in imperial stagnation. Perhaps the civilizations that survive to colonize are not...
  19. thenewenlightenmentage reblogged this from scinerds
  20. ahandsomestark reblogged this from scinerds
  21. shychemist reblogged this from thescienceofreality
  22. decadentscience reblogged this from scinerds and added:
    Very unsettling, but interesting at the same time!
  23. birdwithapeopleface reblogged this from scinerds and added:
    This is fascinating.
  24. xxkitties4evaxx reblogged this from scinerds
  25. thescienceofreality reblogged this from contemplatingmadness